Silicon-based electrically driven microcavity LED
نویسندگان
چکیده
منابع مشابه
Silicon-based electrically driven microcavity LED
Introduction: The realisation of Si-based, electrically driven light emitters is a key requirement for the implementation of low-cost Si-based optoelectronics [1]. Realising Si-based light sources in a process technology compatible with mainstream microelectronics technology is one of the big challenges of semiconductor technology. Because of its indirect bandgap Si has a low radiative recombin...
متن کاملElectrically-driven carbon nanotube-based plasmonic laser on silicon
Photonic signal processing requires efficient on-chip light sources with higher modulation bandwidths. Today’s conventional fastest semiconductor diode lasers exhibit modulation speeds only on the order of a few tens of GHz due to gain compression effects and parasitic electrical capacitances. Here we theoretically show an electrically-driven carbon nanotube (CNT)-based laser utilizing strong l...
متن کاملTask-space Control of Electrically Driven Robots
Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...
متن کاملElectrically driven silicon resonant light emitting device based on slot-waveguide.
An all-silicon in-plane micron-size electrically driven resonant cavity light emitting device (RCLED) based on slotted waveguide is proposed and modeled. The device consists of a microring resonator formed by Si/SiO2 slot-waveguide with a low-index electroluminescent material (erbium-doped SiO2) in the slot region. The geometry of the slot-waveguide permits the definition of a metal-oxide-semic...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2004
ISSN: 0013-5194
DOI: 10.1049/el:20040574